Pediatric Dental Trauma

How to manage its trauma in MDS Examination

Dr Nitesh Tewari
MDS, FIADT (USA)
Associate Professor
Pedodontics & Preventive Dentistry
Centre For Dental Education and Research
All India Institute of Medical Sciences, New Delhi
Pediatric Dental Trauma

How to manage its trauma in MDS Examination
Mechanism of TDI

Direct

Indirect

Predisposing Factors

Iatrogenic
Dental Proclination

Environmental
Behavioural
Systemic

Demographic Factors

Age
Sex
Socio-economic status
Ethnicity

Nature & Intent

Intentional
Un-intentional

Host Factors
Object Resilience

Elements of Traumatic Episode
Object Shape
Energy of Impact
Direction of Force

TDI Pathognomonic Pentad
Etiopathogenesis,
Management and
Prognosis of TDI

Indian Society of Dental Traumatology
Classification by Rabinowitch (1956)

<table>
<thead>
<tr>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatic Dental Injuries of Primary Teeth</td>
</tr>
<tr>
<td>1. Fractures of the enamel or slightly into the dentin</td>
</tr>
<tr>
<td>2. Fractures into the dentin</td>
</tr>
<tr>
<td>3. Fractures into the pulp</td>
</tr>
<tr>
<td>4. Fractures of the root</td>
</tr>
<tr>
<td>5. Comminuted fractures</td>
</tr>
<tr>
<td>6. Displaced teeth</td>
</tr>
</tbody>
</table>

Ellis and Davey’s Classification (1960)

<table>
<thead>
<tr>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatic Dental Injuries of Primary Teeth</td>
</tr>
<tr>
<td>Class 1- Simple fracture of the crown involving little or no dentin.</td>
</tr>
<tr>
<td>Class 2- Extensive fracture of the crown involving considerable dentin but not the dental pulp.</td>
</tr>
<tr>
<td>Class 3- Extensive fracture of the crown involving considerable dentin and exposing the dental pulp.</td>
</tr>
<tr>
<td>Class 4- The traumatized teeth that become non-vital with or without a loss of crown structure.</td>
</tr>
<tr>
<td>Class 5- Teeth lost as a result of trauma.</td>
</tr>
<tr>
<td>Class 6- Fracture of the root with or without a loss of the crown structure.</td>
</tr>
<tr>
<td>Class 7- Displacement of a tooth without fracture of the crown or root.</td>
</tr>
<tr>
<td>Class 8- Fracture of crown en masse and its replacement.</td>
</tr>
<tr>
<td>Class 9- Traumatic injuries to primary teeth.</td>
</tr>
</tbody>
</table>

Classification by Ulfon (1985)

<table>
<thead>
<tr>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatic Dental Injuries from Clinical/Endodontic point of view: Crown Fractures only & without radiographs</td>
</tr>
<tr>
<td>A. Fracture of enamel</td>
</tr>
<tr>
<td>B. Fracture of the crown with indirect pulp exposure through the dentin.</td>
</tr>
<tr>
<td>C. Fracture of the crown with direct pulp exposure.</td>
</tr>
</tbody>
</table>
WHO Classification (1978 & 1995)

- **873.60** - Fracture of Enamel with only Enamel chipping.
- **873.61** - Fracture of crown of tooth with Enamel & Dentin without pulpal involvement.
- **873.62** - Fracture of crown of tooth with pulpal involvement.
- **873.63** - Fracture of root of tooth.
- **873.64** - Fracture of crown with root of tooth.
- **873.66** - Tooth concussion—sensitive to percussion, subluxation—loosening.
- **873.67** - Intrusion or Extrusion.
- **873.68** - Avulsion or Exarticulation.
- **873.69** - Other injuries—including laceration of soft tissues.

International Classification of Diseases to Dentistry and Stomatology (1995)

S02 - Fracture of skull and facial bones
- **S02.4** - Fracture of malar and maxillary bones.
- **S02.5** - Fracture of tooth—includes primary (deciduous) and permanent teeth.
- **S02.50** - Fracture of enamel of tooth only Enamel chipping.
- **S02.51** - Fracture of crown of tooth without pulpal involvement.
- **S02.52** - Fracture of crown of tooth with pulpal involvement.
- **S02.53** - Fracture of root of tooth.
- **S02.54** - Fracture of crown with root of tooth.
- **S02.57** - Multiple fractures of teeth.

S03 - Dislocation, sprain and strain of joints and ligaments of head
- **S03.0** - Dislocation of jaw.
- **S03.1** - Dislocation of septal cartilage of nose.
- **S03.2** - Dislocation of tooth.
- **S03.20** - Luxation of tooth.
- **S03.21** - Intrusion or extrusion of tooth.
- **S03.22** - Avulsion of tooth (exarticulation).
<table>
<thead>
<tr>
<th>Modification of Ellis Classification by McDonald, Avery and Lynch (1983)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1: Simple fracture of the crown involving little or no dentin.</td>
</tr>
<tr>
<td>Class 2: Extensive fracture of the crown involving considerable dentin, but not the dental pulp.</td>
</tr>
<tr>
<td>Class 3: Extensive fracture of the crown with an exposure of the dental pulp.</td>
</tr>
<tr>
<td>Class 4: Loss of the entire crown.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Garcia-Godoy’s Classification for Traumatic Injuries (1981)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Modified from WHO-1978</td>
</tr>
<tr>
<td>Class 0: Enamel Crack</td>
</tr>
<tr>
<td>Class 1: Enamel Fracture</td>
</tr>
<tr>
<td>Class 2: Enamel-dentin fracture without pulpal exposure.</td>
</tr>
<tr>
<td>Class 3: Enamel-dentin fracture with pulpal exposure</td>
</tr>
<tr>
<td>Class 4: Enamel-dentin-cementum fracture without pulpal exposure.</td>
</tr>
<tr>
<td>Class 5: Enamel-dentin-cementum fracture with pulpal exposure</td>
</tr>
<tr>
<td>Class 6: Root fracture</td>
</tr>
<tr>
<td>Class 7: Concussion</td>
</tr>
<tr>
<td>Class 8: Luxation (loosening)</td>
</tr>
<tr>
<td>Class 9: Lateral displacement</td>
</tr>
<tr>
<td>Class 10: Intrusion</td>
</tr>
<tr>
<td>Class 11: Extrusion</td>
</tr>
<tr>
<td>Class 12: Avulsion</td>
</tr>
<tr>
<td>Pulver’s Classification of Traumatic Injuries (1982)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Descriptive Classification for Combination Trauma</td>
</tr>
<tr>
<td>Class I</td>
</tr>
<tr>
<td>Division I- No external fracture, no displacement</td>
</tr>
<tr>
<td>Division II- No fracture but displacement</td>
</tr>
<tr>
<td>Division III- Fracture of enamel only, no displacement</td>
</tr>
<tr>
<td>Division IV- Fracture of enamel and displacement</td>
</tr>
<tr>
<td>Class II</td>
</tr>
<tr>
<td>Division I- Fracture of enamel and dentin only, no displacement</td>
</tr>
<tr>
<td>Division II- Fracture of enamel and dentin only with displacement</td>
</tr>
<tr>
<td>Class III</td>
</tr>
<tr>
<td>Division I- Fracture (with exposure of pulp), no displacement</td>
</tr>
<tr>
<td>Division II- Fracture (with exposure of pulp) and displacement</td>
</tr>
<tr>
<td>Class IV</td>
</tr>
<tr>
<td>Division I- Fracture of root</td>
</tr>
<tr>
<td>Class V</td>
</tr>
<tr>
<td>Division I- Intrusion</td>
</tr>
<tr>
<td>Division II- Partial avulsion</td>
</tr>
<tr>
<td>Division III- Complete avulsion</td>
</tr>
</tbody>
</table>
Descriptive Classification

<table>
<thead>
<tr>
<th>A. Injuries to hard dental tissues and pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel Infraction - An incomplete fracture (crack) of the enamel without loss of tooth substance.</td>
</tr>
<tr>
<td>Enamel Fracture (Uncomplicated crown fracture) - A fracture with loss of enamel only.</td>
</tr>
<tr>
<td>Enamel-dentin fracture (Uncomplicated crown fracture) - A fracture with loss of enamel and dentin, but not involving the pulp.</td>
</tr>
<tr>
<td>Complicated crown fracture - A fracture involving enamel and dentin, and exposing the pulp.</td>
</tr>
<tr>
<td>Uncomplicated Crown-root fracture - A fracture involving enamel, coronal and radicular dentin, and cementum.</td>
</tr>
<tr>
<td>Complicated Crown-root fracture - A fracture involving enamel, coronal and radicular dentin, cementum and exposing the pulp.</td>
</tr>
<tr>
<td>Root fracture - A fracture involving radicular dentin, alveolar bone, and the pulp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Injuries to periodontal tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concussion - An injury to the tooth-supporting structures without abnormal loosening or displacement of the tooth, but with increased reaction to percussion.</td>
</tr>
<tr>
<td>Subluxation (Loosening) - An injury to the tooth supporting structures with abnormal loosening but without displacement of the tooth.</td>
</tr>
<tr>
<td>Extra-axial luxation (Peripheral dislocation, partial avulsion) - Partial displacement of the tooth out of its socket.</td>
</tr>
<tr>
<td>Intraxial luxation (Central dislocation) - Displacement of the tooth into the alveolar bone. This injury is accompanied by comminution or fracture of the alveolar socket.</td>
</tr>
<tr>
<td>Avulsion (Exarticulation) - Complete displacement of the tooth out of its socket.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Injuries to gingiva or oral mucosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel Infraction - An incomplete fracture (crack) of the enamel without loss of tooth substance.</td>
</tr>
<tr>
<td>Contusion of gingival or oral mucosa - A bruise usually produced by impact with a blunt object and not accompanied by a break in mucosa but usually causing submucosal hemorrhage.</td>
</tr>
<tr>
<td>Abrasion of gingival or oral mucosa - A superficial wound produced by rubbing or scraping of mucosa leaving a raw bleeding surface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Injuries to supporting bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comminution of alveolar socket wall - Crushing and compression of the alveolar socket. As in intrusion & lateral luxation.</td>
</tr>
<tr>
<td>Fractures of alveolar socket wall - A fracture contained to the facial or lingual socket wall.</td>
</tr>
<tr>
<td>Fractures of maxillary or mandibular alveolar process - A fracture of the alveolar process which may or may not involve the alveolar socket.</td>
</tr>
<tr>
<td>Fractures of the mandible or maxilla - A fracture involving the base of the mandible or maxilla and often the alveolar process (jaw fracture). The fracture may or may not involve the alveolar socket.</td>
</tr>
<tr>
<td>Management Charts</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Features</th>
<th>Investigations</th>
<th>Treatment</th>
<th>Follow up</th>
<th>Prognosis & Sequelae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel Infraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Dentition</td>
<td>Often not reported by parents/caregivers and not associated with any pain. Association with any other type of TDI is rare.</td>
<td>No investigation is required</td>
<td>No treatment has been recommended in most cases except for smoothing of edges. Although in Indian situations, sealing by flowable composite or glass ionomer can be done due to poor patient compliance for follow ups.</td>
<td>No follow up recommended, although tooth’s status along with restoration must be evaluated in every routine follow up visit.</td>
</tr>
<tr>
<td>Permanently Dentition</td>
<td>Solitary to Multiple cracks or craze lines appear on the tooth surface. Patients are sometimes even unaware of this injury with stains percolating in the defects in long standing cases. It is not painful unless associated with another TDI as root fracture and luxation injury.</td>
<td>No investigation as IOPA radiograph or pulp testing is required unless any other painful sign is observed.</td>
<td>In case of widespread or deep crazing, a composite restoration is done to restore esthetics and prevent future discoloration of fracture lines. Some times, especially in localised superficial crazing, no treatment is necessary.</td>
<td>No follow up is required unless associated with any other TDI. However the status of restored tooth/teeth must be evaluated in routine dental check ups.</td>
</tr>
</tbody>
</table>

Enamel Fracture (Uncomplicated Crown Fracture): (Ellis Class I for Permanent Dentition)				
Primary Dentition	This TDI involved loss of enamel without any sign of dentin or pulp involvement. It might be associated with other injuries as root fracture or luxation causing pain or mobility.	No investigation is required unless associated with any other TDI.	Sealing of enamel defect with glass ionomer cement (GIC) is recommended. Composite resin restoration can be done if longevity of GIC is questionable, lost e or angle is large.	4 clinical ev. ation after 3-4 weeks
Permanently Dentition	It is associated with enamel loss in form of fractured incisal edge or angle without any dentin or pulpal involvement. Pain if present is secondary to any other associated TDI as root fracture or luxation.	No investigations are usually required. IOPA radiograph and pulp testing may be needed for associated injury. If soft tissue trauma along with enamel fracture, must be radiographed to. X for fractured fragment.	Treatment of choice is fragment reattachment, if required stability during composite bonding. Composite resin build up can be done when fragment is not available.	A follow up of 6-8 weeks followed by 1 year with clinical and radiographic evaluation.

Enamel-dentin fracture (Uncomplicated crown fracture): (Ellis Class II for Permanent Dentition)				
Primary Dentition	It involves loss of crown structure with exposure of dentinal surface and may be associated with trauma, sensitivity, or cold. This may be associated with luxation, root fracture.	Radiographs are needed in absence of loss of crown structure and without any other TDI. Soft tissue radiographs might be needed for ruling out any embedded fractured fragment.	Recommended treatment is to seal the exposed dentin with glass ionomer cement to prevent microleakage and prevent sensitivity. Fragment reattachment can be done if patient comes with fractured portion. In dentin fractures close to pulp, within 0.5 mm (pink, no bleeding), calcium hydroxide liner is placed and covered with direct bonding material as GIC. Use of composite resin in cooperative children can lead to better aesthetic results. Large fractures can be treated with strip crowns and other full coverage esthetic alternatives as veneered stainless steel crowns and pediatric zirconia crowns. One important thing not to be missed is removal of plaque biofilm from the fractured surface, especially when there is a treatment delay. Evidence of biofilm results in faulty sealing, marginal leakage and loss of restoration.	A clinical evaluation after 3-4 weeks has been recommended for follow up.
Prognosis: It’s prognosis is good unless associated with any other TDI. No long term sequelae of primary tooth enamel infraction has been reported in associated succedaneous tooth.				
How to attempt DT Theory Questions?

Essay Questions:

Q.1. Traumatic Dental Injuries

Expectations:
Discuss the entire section of TRAUMATIC DENTAL INJURIES ONLY
Structured Answer with Diagrams, references and details
Avoidance of irrelevant discussion

Assume it as your Library dissertation
Structure-

• **Introduction**: Traumatic Dental Injuries- Definitions (cite author)

• **Epidemiology**: Global, Indian, Quantum Comparison with Maxillofacial Trauma, Age of predilection, Bimodal peaks in males (cite authors)

• **Type of Trauma**: Direct & Indirect, Primary tooth and Permanent Tooth

• **Etiopathogenesis**: Sources and conditions (cite authors)

• **Classification**: Don’t Limit to Ellis and Andreasen’s only
• **Management** (Discuss based on IADT 2012 Guidelines)
 • Emergency evaluation- History, Radiographs, Emergency Instructions
 • Management-
 Based on Andreasen’s Classification- Primary & Permanent (Definition, Clinical Features, Radiographic Features, investigations, management, Follow up, SEQUELAE)
 Draw Diagrams

• **Trauma Prevention** (cite Authors)

• **Trauma Awareness** (Compare studies and Clinical Decision Support tools briefly)

• Conclusion
How to attempt DT Theory Questions?

Essay Questions:
Q.2. Luxation injuries

Expectations:
Discuss the entire section of LUXATION INJURIES ONLY
Structured Answer with Diagrams, references and details
Avoidance of irrelevant discussion

Assume it as your Library dissertation
Introduction: Luxation Injuries- Definition (cite author)
Describe how other classifications deal with this type of injury

Epidemiology: Global, Indian, Association with panfacial Trauma, Age of predilection, (cite authors)

Etiopathogenesis: Sources and conditions (cite authors)

Classification: With Diagrams. Describe only with Andreasen’s Classification
 • Concussion
 • Subluxation
 • Lateral Luxation
 • Extrusive Luxation
 • Intrusive Luxation
 • Avulsion
 • Combination Luxation Injuries
• **Management** (Discuss based on IADT 2012 Guidelines)
 • Emergency evaluation- History, Radiographs, Emergency Instructions
 • Management-
 Based on Andreasen’s Classification- Primary & Permanent
 (Definition, Clinical Features, Radiographic Features, investigations, management, Follow up, SEQUELAE)
 Description of sequelae is important in this question due to high incidence
 Draw Diagrams

• **Prevention of Luxation injuries**- Sports Dentistry (cite Authors)

• **Trauma Awareness** (Compare studies and Clinical Decision Support tools briefly)

• **Conclusion**
Essay Questions:

Q.3. Management of Tooth Avulsion

Expectations:
Discuss the entire section of TOOTH AVULSION ONLY
Base your answer on IADT Guideline 2012 but describe details from all sources
Structured Answer with Diagrams, references and details
Avoidance of irrelevant discussion

Assume it as your Library dissertation
Structure-

- **Introduction**: Avulsion Injuries- Definition (cite author)
 Describe how other classifications deal with this type of injury
- **Epidemiology**: Global, Indian, Association with panfacial Trauma, Age of predilection (cite authors)
- **Etiopathogenesis**: Sources and conditions (cite authors)
- **Emergency evaluation and considerations**
- **Emergency instructions**
- **Detailed management**
• **Detailed Management** (Discuss based on IADT 2012 Guidelines)
 • Management of Avulsed Primary tooth
 (investigations if tooth can be accounted for or there is risk of aspiration, management, Follow up, SEQUELAE)
 Management of immediate reported cases- Replantation controversy? (cite two systematic reviews)
 Management of delayed reported cases- rehabilitation and space management
 Description of sequelae
 Draw Diagrams
Detailed Management (Discuss based on IADT 2012 Guidelines)

- Management of Avulsed Permanent tooth (investigations if tooth can be accounted for or there is risk of aspiration, management, Follow up, Sequelea management)

Management of immediate reported cases:

Six Scenarios

1. Self replanted- Closed Apex
2. Closed Apex- Extra oral Dry time <60 min
3. Closed Apex- Extra oral Dry time >60 min
4. Self replanted- Open Apex
5. Open Apex- Extra oral Dry time <60 min
6. Open Apex- Extra oral Dry time >60 min

Discuss: Splinting (Studies)
Discuss: Tooth Storage Medium (Studies)
Discuss: Sequelea as External Inflammatory Root Resorption and Ankylosis and their management

Management of delayed reported cases- Autotransplantation, rehabilitation using Fibre reinforced bridge, Implants

Draw Diagrams
How to attempt DT Theory Questions?

Long Questions:

Q. Direct Questions for management

Expectations:
Discuss the entire section of TOOTH TRAUMA ASKED ONLY
Descriptive Classification with details from all sources
Structured Answer with Diagrams, references and details
Avoidance of irrelevant discussion
Questions have been for Permanent Dentition mostly

- Management of- Ellis Class III to VI
- Management of Crown Fracture with Vital pulp- (Must Discuss both open and closed apex along with combination trauma)
- Management of Crown Fracture with Non Vital Pulp- Same
- Management of Root Fracture
- Management of Avulsed permanent tooth
- Primary tooth trauma
Structure

• **Introduction**: Define the condition (cite author)
 Describe how other classifications deal with this type of injury

• **Epidemiology**: Global, Indian, Association with panfacial Trauma, Age of predilection in short (cite authors)

• **Etiopathogenesis**: Sources and conditions (cite authors)

• **Emergency evaluation and considerations**

• **Emergency instructions**

• **Detailed management**
• **Management** (Discuss based on IADT 2012 Guidelines)
 • Emergency evaluation- History, Radiographs, Emergency Instructions
 • Management-
 Based on Andreasen’s Classification-
 (Definition, Clinical Features, Radiographic Features, investigations, management, Follow up, SEQUELAE)
 Draw Clear and explanatory Diagrams

• **Prevention of injuries** brief (cite Authors)

• **Trauma Awareness** brief (Compare studies and Clinical Decision Support tools briefly)

• **Conclusion**
How to attempt DT Theory Questions?

Long Questions:

Q. Case Scenario Based Questions for management

Expectations:
Decipher the Case into simple description
Discuss the entire section of TOOTH TRAUMA ASKED ONLY
Descriptive Classification with details from all sources
Structured Answer with Diagrams, references and details
Avoidance of irrelevant discussion
Q. Discuss the management of **Ellis Class III Fracture** in an **12 year** old boy reporting to the dentist after **two hours** of trauma.

Q. Discuss the management of **Crown Fracture** in an **12 year** old boy reporting to the dentist after **two hours** of trauma.

Q. Discuss the management of **Crown Fracture** in an **8 year** old boy reporting to the dentist after **two hours** of trauma.

Q. Discuss the management of **Crown Fracture** in an **12 year** old boy reporting to the dentist after **two weeks** of trauma.

Q. Discuss the management of **Avulsion** in an **9 year** old girl reporting to the dentist in **4 hours** of trauma with tooth stored in **paper towel**.
How to prepare & attempt DT Theory Questions?

Short Notes:

Q. Trauma management Specific Questions

Expectations:
To the point
Discuss the specific aspect of TOOTH TRAUMA ASKED ONLY
Structured Answer (Mostly) with Diagrams and references
NO irrelevant discussion
Questions have been for

- Splinting
- Tooth Storage Media
- Intrusive Luxation
- Extrusive Luxation
- External Root Resorption
- Long term sequelae to primary tooth trauma
- Decoronation
- Autotransplantation
How to prepare & attempt DT Theory Questions?

Short Notes:

Q. Treatment Modality based Questions

Expectations:
To the point
Discuss the specific aspect of Treatment **ONLY**
Discuss its relevance in trauma management
Structured Answer (Mostly) with Diagrams and references
NO irrelevant discussion
Questions have been for

- Revascularisation
- MTA/Biodentin
- Apical Barrier Technique
- Apexification
- Apexogenesis
- Apexification vs Apexogenesis
- Pulp Vitality Testing
- Pulse Oximetry
- Tri Antibiotic Paste
- Stem Cells in Dentistry/ Regenerative Dentistry
Common Errors in attempting DT Theory Questions

• Lack of structure
• Lack of Diagrams
• Confusion regarding which BOOK to follow
• Habit of writing unnecessary details
• Taking it TOO easy
• Lack of references
The Viva Voce and Pedagogy questions

- Most of the questions discussed in short questions
- Dental Trauma Guide (www.dentaltraumaguide.org)
- Root canal disinfection
- Recent articles (best strategy)

Common Errors:
- Deviating from what has been asked
- Mis-Leading the questions
- Missing the IADT Guidelines
Some Important Articles
(NOT TO BE MISSED)
Guidelines

International Association of Dental Traumatology

Diagnosis

Management

Follow-up

CROSS REFERENCES

REFERENCES

International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 1. Fractures and luxations of permanent teeth

Anthony J. DiAngelis1, Jens O. Andreassen2, Kurt A. Ebeleseeder3, David J. Kenny4, Martin Trope4, Asgeir Sigurdsson6, Lars Andersson7, Cecilia Bourguignon8, Marie Theresia Flores9, Morris Lamar Hicks10, Antonino R. Lenzu11, Barbro Malmgren12, Alex J. Moule13, Yango Pold14, Mitsuhiro Tsukiboshi15

Abstract — Traumatic dental injuries (TDIs) of permanent teeth occur frequently in children and young adults. Crown fractures and luxations are the most commonly occurring of all dental injuries. Proper diagnosis, treatment planning and followup are important for improving a favorable outcome. Guidelines should assist dentists and patients in decision making and for providing the best care effectively and efficiently. The International Association of Dental Traumatology (IADT) has developed a consensus statement after a review of the dental literature and group discussions. Experienced researchers and clinicians from various specialties were included in the group. In cases where the data did not appear conclusive, recommendations were based on the

World traumatic dental injury prevalence and incidence, a meta-analysis—One billion living people have had traumatic dental injuries

Stefano Petti¹ | Ulf Glendor² | Lars Andersson³

¹Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
²Faculty of Odontology, Malmö University, Malmö, Sweden
³Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Kuwait City, Kuwait

Abstract
Traumatic dental injuries (TDIs) account for a considerable proportion of bodily injuries. Nevertheless, global TDI frequency is unknown, probably because TDI diagnosis is not standardized. This study estimated world TDI frequency. A literature search (publication years 1996-2016) was aimed at covering as many countries, communities, ethnic groups as possible, thus achieving high generalizability. In particular, non-specific keywords, no language restrictions, and large databanks were used. Observational studies reporting proportions of individuals with at least one TDI (prevalence) and who developed TDI (incidence rate) were considered. Prevalence
The fifth most prevalent disease is being neglected by public health organisations

Stefano Petti, Jens Ove Andreasen, Ulf Glendor, Lars Andersson

Open Access • Published: October, 2018 • DOI: https://doi.org/10.1016/S2214-109X(18)30102-2

The progress towards reduction of global mortality has produced an epidemiological transition towards non-fatal diseases, which challenge the ability of the world’s population to live in full health. Although traumatic dental injuries are not lethal, their treatment is often expensive ($US0 000 000–5 000 000 per million inhabitants).

Prevalence of Traumatic Dental Injuries Among 12- to 15-year-old Schoolchildren in Ambala District, Haryana, India
Kumar, Adarsh / Bansal, Vikram / Veeresha, Koratagere Lingappa / Sogi, Girish M.

Prevalence and Etiology of Traumatic Injuries to the Anterior Teeth among 5 to 8 Years Old School Children in Mathura City, India: An Epidemiological Study.
Goelani S¹, Yeluri R², Munchi AK².

Traumatic injuries in the primary teeth of 4- to 6-year-old school children in Gulbarga city, India. A prevalence study.
Bhaya DP¹, Shrivele TR.
Etiopathogenesis

Dental Traumatology

Aetiology and risk factors related to traumatic dental injuries – a review of the literature

Ulf Gliander
Division of Social Medicine and Public Health Science, Department of Medicine and Society, Linköping University, Linköping, Sweden

Abstract
Background/Aim: During the past 30 years, the number of aetiologies of traumatic dental injuries (TDIs) has increased dramatically in the literature and now includes a broad spectrum of variables, including oral and environmental factors and human behaviour. The aim of this study is to present an international review of well-known as well as less well-known unintentional and intentional causes of TDIs. Moreover, some models that are useful in investigating contact sport injuries are presented.

Materials and methods: The databases of Medline, Cochrane, Social Citation Index, Science Citation Index and CINAHL from 1995 to the present were used.

Results: Oral factors (increased overjet with protrusion), environmental determinants (material deprivation) and human behaviour (risk-taking children, children being bullied, emotionally stressful conditions, obesity and attention-deficit hyperactivity disorder) were found to increase the risk for TDIs. Other factors increasing the risk for TDIs are presence of illness, learning difficulties, physical limitations and inappropriate use of teeth. A new cause of TDIs that is of particular interest is oral piercing. In traffic facial injury was similar in restrained occupants (no seat belts) and occupants restrained only with an air
Dental trauma: prevalence and risk factors in schoolchildren.

Goettems ML¹, Torriani DD, Hallal PC, Correa MB, Demarco FF.

Clarifying the effect of behavioral and clinical factors on traumatic dental injuries in childhood: a hierarchical approach.

Kramer PF¹, Feldens EF, Bruch CM, Ferreira SH, Feldens CA.
Long-term sequelae to Primary TDI on Permanent Dentition

Long term effects of traumatic dental injuries of primary dentition on permanent successors: a retrospective study of 596 teeth

Nitesh Tewari, Vijay Prakash Mathur, Neerja Singh, Subash Singh, Ramesh Kumar Pandey

Accepted manuscript online: 1 March 2018 Full publication history
DOI: 10.1111.edt.12391 view/save citation
Cited by (CrossRef): 0 articles Check for updates Citation tools ▼

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/edt.12391
Functional biomaterials and extracellular matrices for dental tissue repair and regeneration

Pulp-dentin regeneration: current approaches and challenges

Chanyong Jung1,2, Sangwan Kim2, Taeuk Sun2, Yong-Bum Cho2 and Minju Song2

Abstract
Regenerative endodontic procedures for immature permanent teeth with apical periodontitis confer biological advantages such as tooth homeostasis, enhanced immune defense system, and a functional pulp-dentin complex, in addition to clinical advantages such as the facilitation of root development. Currently, this procedure is recognized as a paradigm shift from restoration using materials to regenerate pulp-dentin tissues. Many studies have been conducted with regard to stem/progenitor cells, scaffolds, and biomolecules, associated with pulp tissue engineering. However, preclinical and clinical studies have evidently revealed several drawbacks in the current clinical approach to revascularization that may lead to unfavorable outcomes. Therefore, our review examines the challenges encountered under clinical conditions and summarizes current research findings in an attempt to provide direction for transition from basic research to clinical practice.
Pulp Revascularization or Apexification for the Treatment of Immature Necrotic Permanent Teeth: Systematic Review and Meta-Analysis

Gabriel Ferreira Nicoloso*/ Gabriela Maltz Goldenfum**/ Tatiane da Silva Dal Pizzol***/ Roberta Kochenborger Scarparo****/ Francisco Montagner*****/ Jonas de Almeida Rodrigues******/ Luciano Casagrande*******
Clinical procedures for revitalization: current knowledge and considerations
Root Fracture Healing

Apexification, MTA & Apical Barrier

A. Agrafioti, D.G. Giannakoulas*, C.G. Filippatos, E.G. Kontakiotis

Department of Endodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece

*School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece

e-mail: agrafioti@dent.uoa.gr

DOI: 10.23804/ejpd.2017.18.04.03

Introduction

Teeth with necrotic pulp and open apex bring about several challenges to clinicians due to the lack of natural apical constriction and the thin root walls that are prone to fracture [Trope, 2006, Camp, 2008]. In order to confine filling materials into the root canal space and prevent overfilling, the placement of an artificial apical barrier and/or the closure of the apex are necessary before obturation of the root canal system [Trope 2006].

The traditional approach to handle cases with open apex is the multiple-visit apexification treatment with the use of calcium hydroxide (CH) as intracanal medicament [Seltzer, 1988]. The frequency of changes of CH from the root canal constitutes a controversial topic as there are studies that propose that a single placement of this medicament is enough to achieve predictable outcomes [Chawla 1986], whereas others claim that multiple replacements of CH could lead to a more rapid formation of a calcified tissue barrier [Abbot 1998]. The time required for the calcified tissue barrier to form varies from 5 to 20 months [Sheehy and Roberts, 1996] and seems to be influenced by several factors such as opening of the apex, frequency of intracanal medication replacement, age of the patient and the presence of periapical radiolucency [Mackie et al., 1988, Finucane and Kinions, 1999; Kleier and Barr, 1991].

CH apexification has high clinical success rates and
Comparison of mineral trioxide aggregate and calcium hydroxide for apexification of immature permanent teeth: A systematic review and meta-analysis

Jia-Cheng Lin, Jia-Xuan Lu, Qian Zeng, Wei Zhao, Wen-Qing Li, Jun-Qi Xing

Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China

Received 6 November 2015; received in revised form 14 January 2016; accepted 20 January 2016

• Frank AL. Therapy for the divergent pulpless tooth by continued apical formation. J Am Dent Assoc. 1996; 72: 87-93

• Steinig TH, Regan JD, Gutmann JL. The use and predictable placement of mineral trioxide aggregate in one-visit apexification cases. Aus Endod J. 2003; 29: 34-42.
Factors related to treatment and outcomes of avulsed teeth

Bojan Petrovic, Dejan Markovic, Tamara Peric, Duska Blagojevic

Dentistry Clinic of Voivodina, Novi Sad, Serbia
Clinic for Pediatric and Prosthetic Dentistry, Faculty of Stomatology, Novi Sad, Serbia

Abstract

Background: The aim of this study was to examine factors associated with avulsion injury and to specify the association between these factors and the treatment, as well as the outcomes of avulsed permanent incisors in children. Materials and methods: The sample consisted of 51 children with 62 avulsed permanent incisors, whose injuries had been managed in the period 1998–2006. The study was prospective, recording the history of the accident, concomitant injuries, age, gender, apical maturity of the root, replantation rate, storage media, extra-alveolar duration, endodontic treatment, compliance and recall appointments response. Factors were analysed in relation to postoperative outcomes, classified as functional healing (FH), infection-related (inflammatory) resorption (IRR) and replacement resorption (RR). Results: The average age of patients was 10.7 years (range 7–19). In 16/51 patients, tooth avulsion was caused by a road traffic accident. Avulsion was accompanied by concomitant injuries in all cases. Thirty of 62 avulsed teeth were not replanted and 32 incisors were replanted after dry storage. Time until replantation ranged between 15 min and 9 h (median 60 min). The observation period ranged from 1 to 6 years (median 2 years). FH was observed in 5/32, IRR in 20/32 and RR in 7/32 incisors. Ten teeth were extracted during 5-years of observation. Immature incisors exhibited significantly more complications compared with mature teeth (P = 0.04). Storage media and extra-alveolar duration did not significantly influence healing.
Prevention and management of external inflammatory resorption following trauma to teeth

PV Abbott

Effect of treatment delay upon pulp and periodontal healing of traumatic dental injuries – a review article

Printed in Denmark. All rights reserved
Best of Luck for Exam of Life